4.7 Article

Trophic consequences of postfire logging in a wolf-ungulate system

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 257, Issue 3, Pages 1053-1062

Publisher

ELSEVIER
DOI: 10.1016/j.foreco.2008.11.009

Keywords

Forage; Fire; Habitat selection; Salvage logging; Postfire logging; Trophic cascade

Categories

Funding

  1. ACA Challenge Grants in Biodiversity
  2. Foothills Model Forest-Chisholm-Dogrib Fire initiative
  3. Parks Canada
  4. Sundre Forest Products LTD.
  5. Canon National Parks Science Scholarship for the Americas
  6. University of Alberta

Ask authors/readers for more resources

Controversy surrounds postfire logging, often because of negative effects on snag-dependent wildlife species. Few studies, however, have examined effects on early-seral species that may benefit from postfire logging, nor effects on trophic relationships. We studied the effects of postfire logging on trophic dynamics between wolves (Canis lupus), three ungulate species and ungulate forage biomass during the first 3 years in a large burn in the Canadian Rockies, Alberta, Canada. We examined plant biomass and ungulate responses to two treatments (post- and prefire logging) compared to a burned but unlogged area (control). We evaluated resource selection for the three treatments by elk (Cervus elophus) using radiotelemetry and for deer (Odocoileus spp.), moose (Alces alces), and, secondarily, elk using pellet counts. Elk resource selection was modeled as a function of the trade-off between wolf predation risk and herbaceous forage biomass to test for trophic impacts of postfire treatments. Postfire logging had transient effects on total herbaceous biomass; while forb biomass was reduced, increases in graminoid biomass more than compensated by the third year. Prefire logging areas were dominated by a few species, but had generally higher forage biomass by the third year. Ungulates avoided postfire and prefire logged areas despite greater herbaceous biomass. Only when we considered elk resource selection as a function of both forage and wolf predation risk was the extent to which trophic interactions affected by postfire logging revealed. Wolves selected proximity to roads and the higher forage biomass associated with postfire logging in open logged areas. This translated to the highest predation risk for elk in postfire logged areas. Thus, ungulates avoided postfire logged areas because of human alteration of top-down predaticn risk despite enhancements to bottom-up forage biomass. Managers should consider trophic consequences of postfire logging on the interactions among species when gauging logging effects on terrestrial ecosystems. Making use of existing roads, minimizing the construction of new roads, and managing road removal following postfire logging will help mitigate the negative effects of postfire logging on terrestrial ecosystems. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available