4.7 Article

Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Quebec's closed-crown boreal forest

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 257, Issue 2, Pages 483-494

Publisher

ELSEVIER
DOI: 10.1016/j.foreco.2008.09.037

Keywords

Afforestation; Black spruce; Boreal plantation; Carbon balance; Life cycle analysis; Greenhouse gas mitigation

Categories

Ask authors/readers for more resources

Black spruce (Picea mariana (Mill.) B.S.P.) is the dominant tree species in the Canadian province of Quebec's boreal ecosystem, particularly in the black spruce-feathermoss (BSFM) domain (between the 49th and the 52nd parallels). While black spruce is generally well adapted to regenerate after wildfires, regeneration failure can sometimes occur, resulting in the irreversible conversion of closed-crown BSFM to open black spruce-lichen woodlands (OW). With OWs representing approximately 7% (1.6 M ha) of Quebec's BSFM domain, the afforestation of OWs carries significant theoretical potential for carbon (C) sequestration, which has not yet been evaluated. The main objectives of the study were then: (i) to estimate the theoretical C balance of OW afforestation within the closed-crown BSFM domain in Quebec's boreal forest; (ii) to calculate, using the life cycle analysis (LCA) method, all the GHG emissions related to black spruce OW afforestation in the closed-crown BSFM domain of Quebec. The CO2FIX v. 3.1 model was used to calculate the biological C balance between the baseline (natural OW of site index 9 at age 50) and afforestation (black spruce plantation of site index 6 at age 25) scenarios, using the best estimates available for all five recommended C compartments (aboveground biomass, belowground biomass, litter, deadwood, and soil). The simulation revealed a biological C balance of 77.0 t C ha(-1), 70 years following afforestation, for an average net sequestration rate of 1.1 t C ha(-1) year(-1). Biological C balance only turns positive after 27 years. When integrating the uncertainties related to both the plantation growth yield and the wildfire disturbance, the average sequestration rate varies between 0.2 and 1.9 t C ha(-1) year(-1). GHG emissions are 1.3 t CO2 equiv. ha(-1) for all afforestation-related operations, which is less than 0.5% of the biological C balance after 70 years. Thus, GHG emissions do not significantly affect the net C balance of the afforestation project simulated. Several recommendations are made, mostly centered on the factors influencing the growth rate of carbon stocks and the impact of natural disturbances, to minimize the range of uncertainties associated to the sequestration potential and maximize the mitigation benefits of an OW afforestation project. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available