4.5 Article

Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching

Journal

FORENSIC SCIENCE INTERNATIONAL
Volume 224, Issue 1-3, Pages 59-67

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.forsciint.2012.10.031

Keywords

Authentication; Image forensics; Copy-move forgery; Duplicated region detection

Funding

  1. National Science Foundation of China [61202164]

Ask authors/readers for more resources

Copy-move is one of the most commonly used image tampering operation, where a part of image content is copied and then pasted to another part of the same image. In order to make the forgery visually convincing and conceal its trace, the copied part may subject to post-processing operations such as rotation and blur. In this paper, we propose a polar cosine transform and approximate nearest neighbor searching based copy-move forgery detection algorithm. The algorithm starts by dividing the image into overlapping patches. Robust and compact features are extracted from patches by taking advantage of the rotationally-invariant and orthogonal properties of the polar cosine transform. Potential copy-move pairs are then detected by identifying the patches with similar features, which is formulated as approximate nearest neighbor searching and accomplished by means of locality-sensitive hashing (LSH). Finally, post-verifications are performed on potential pairs to filter out false matches and improve the accuracy of forgery detection. To sum up, the LSH based similar patch identification and the post-verification methods are two major novelties of the proposed work. Experimental results reveal that the proposed work can produce accurate detection results, and it exhibits high robustness to various post-processing operations. In addition, the LSH based similar patch detection scheme is much more effective than the widely used lexicographical sorting. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available