4.3 Article

Evaluation of a Multiplex Real-Time Polymerase Chain Reaction for the Quantification of Escherichia coli O157 in Cattle Feces

Journal

FOODBORNE PATHOGENS AND DISEASE
Volume 9, Issue 1, Pages 79-85

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/fpd.2011.0947

Keywords

-

Funding

  1. U.S. Department of Agriculture [2008-35201-04679]
  2. NIFA [2008-35201-04679, 582937] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Cattle are asymptomatic reservoirs for Escherichia coli O157, a major foodborne pathogen. The organism generally colonizes the hindgut of cattle and is shed in the feces at low concentrations. The objective of this research was to evaluate a multiplex, real-time polymerase chain reaction (mqPCR) assay for quantification of E. coli O157 in cattle feces using stx1, stx2, and rfbE gene targets. Primer efficiency and analytical sensitivity of the assay were evaluated with a single or pooled (five strain) culture of E. coli O157. In pure culture, the minimum detection limit of the assay was 1.4 x 10(3) CFU/mL and 3.6 x 10(3) CFU/mL for the single and five-strain mixture of E. coli O157, respectively. Diagnostic sensitivity was analyzed using DNA extracted from cattle feces spiked with E. coli O157. In feces spiked with the pooled mixture of five E. coli O157 strains, the minimum detection limit was 3.6 x 10(4) CFU/g. We also evaluated the assay with feces from cattle experimentally inoculated with E. coli O157 by comparing the results to a culture-based method. For the majority of samples tested, the concentration of E. coli O157 detected by the real-time and culture methods was within one log difference. However, the assay could only be evaluated for cattle shedding high concentrations of E. coli O157. In conclusion, the mqPCR quantifying E. coli O157 in cattle feces using stx1, stx2, and rfbE gene targets may have use in detecting and quantifying super shedders, but is not applicable for quantification in animals shedding low concentrations (10(2) to 10(3) CFU/g feces).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available