4.7 Article

Effect of alkali treatment on structure and function of pea starch granules

Journal

FOOD CHEMISTRY
Volume 135, Issue 3, Pages 1635-1642

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2012.06.003

Keywords

Pisum sativum; Pea; Starch granule; Alkaline treatment; Gelatinization; In vitro digestibility

Funding

  1. University of Sydney [U2527-2009/2012]

Ask authors/readers for more resources

The effect of alkaline treatment on the structural and functional properties of pea starch granules was studied using a range of characterization methods including amylose content, scanning electron microscopy (SEM), X-ray diffraction (XRD), C-13 nuclear magnetic resonance (NMR), swelling power, differential scanning calorimetry (DSC), the Rapid Visco Analyser (RVA) and in vitro digestibility. The amylose content decreased by about 20-25% after 15 days of alkaline treatment and there were small decreases in relative crystallinity and double helix content. Deformations were observed on the surface of alkali-treated granules, and there was evidence of adhesion between some of the granules. There was a 25-30% reduction in peak and final RVA pasting viscosities, but only a small reduction in swelling power. The endothermic transition of alkali-treated starch was broadened with a shift of the endothermic peak to higher temperature. However, the endothermic enthalpy remained largely unaffected. Alkali-treatment greatly increased the rate of in vitro enzymatic breakdown of the pea starch. More prolonged alkaline treatment for 30 days did not cause further significant changes to the structural and functional properties of the starch granules. The effects of alkali on structure and function of pea starch are explained on the basis of limited gelatinization of the granules. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available