4.7 Article

Saffron (Crocus sativus L.) increases glucose uptake and in muscle cells via multipathway mechanisms

Journal

FOOD CHEMISTRY
Volume 135, Issue 4, Pages 2350-2358

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2012.06.092

Keywords

Saffron; Glucose uptake; Skeletal muscle cells; AMPK; Insulin sensitivity

Ask authors/readers for more resources

Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C2C12 skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available