4.6 Review

Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 12, Issue 108, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2015.0254

Keywords

biofunctionalization; cardiac tissue engineering; biomimetic scaffolds; chemical modification; biological modification

Funding

  1. EU FP-7 BIOSCENT project [214539]

Ask authors/readers for more resources

The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers ( polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-L-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropyl-acrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available