4.5 Article

Optimization of enzymatic pretreatment for n-hexane extraction of oil from Silybum marianum seeds using response surface methodology

Journal

FOOD AND BIOPRODUCTS PROCESSING
Volume 90, Issue C2, Pages 87-94

Publisher

ELSEVIER
DOI: 10.1016/j.fbp.2011.02.010

Keywords

Silybum marianum; Seed oil; Enzymatic pretreatment; Response surface methodology; Fatty acid composition; Scanning electron microscopy

Ask authors/readers for more resources

An investigation on Enzymatic pretreatment for n-hexane extraction of oil from the Silybum marianum seeds was conducted. The optimum combination of extraction parameters was obtained with the response surface methodology (RSM) at a four-variable and five-level central composite design (CCD). The optimum parameters of enzymatic pretreatment were as follows: enzyme concentration of 2.0% (w/w), temperature of 42.8 degrees C, reaction time of 5.6 h, and pH of 4.8. After enzymatic pretreatment, the oil was extracted by n-hexane for 1.5 h, and the oil yield on a dry basis was 45.70%, which well matched with the predicted value (45.86%). The results of the effects of the enzymatic pretreatment for n-hexane extraction of oil from the aspects of oil yield, microstructure and the fatty acid compositions showed that the enzymatic pretreatment had not affected on the fatty acid compositions, but could cause structure breakage of the S. marianum seeds and accelerate releasing extra oil, which increased the oil yield by 10.46% compared with n-hexane extraction for 1.5 h without enzymatic pretreatment, and confirmed the efficacy of enzymatic pretreatment for n-hexane extraction of oil from the S. marianum seeds. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available