4.5 Article Proceedings Paper

Use of monomer fraction data in the parametrization of association theories

Journal

FLUID PHASE EQUILIBRIA
Volume 296, Issue 2, Pages 219-229

Publisher

ELSEVIER
DOI: 10.1016/j.fluid.2010.05.028

Keywords

Monomer fraction; Association theories; CPA; PC-SAFT; Water; Methanol; NRHB

Ask authors/readers for more resources

Association theories such as the CPA (cubic-plus-association), NRHB (non-random hydrogen bonding) equations of state and the various variants of SAFT (statistical associating fluid theory) have been extensively applied to phase equilibrium calculations. Such models can also be used for estimating the monomer fraction of hydrogen bonding compounds and their mixtures. Monomer fraction data are obtained from spectroscopic measurements and they are available for a few compounds such as pure water and alcohols as well as for some alcohol-alkane and similar mixtures. These data are useful for an understanding of the capabilities and limitations of association models. The purpose of this work is two-fold: (i) to compare the performance of three models, CPA, NRHB and sPC-SAFT, in predicting the monomer fraction of water, alcohols and mixtures of alcohol-inert compounds and (ii) to investigate whether improved model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression improved implies parameters which can represent several pure compound properties as well as monomer fraction data for pure compounds and mixtures. The accuracy of experimental monomer fraction data is discussed, as well as the role of monomer fraction data in clarifying which association scheme should be used in these equations of state. The results reveal that the investigated association models (CPA, sPC-SAFT and NRHB) can predict, at least qualitatively correct, monomer fractions of associating compounds and mixtures. Only, small differences are observed between the models. In addition, it has been shown that, using a suitable association scheme, a single set of parameters can describe satisfactorily vapor pressures, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available