4.4 Article

Large Eddy Simulations and Experiments of Flow Around Finite-Height Cylinders

Journal

FLOW TURBULENCE AND COMBUSTION
Volume 84, Issue 2, Pages 239-275

Publisher

SPRINGER
DOI: 10.1007/s10494-009-9232-0

Keywords

Turbulence; Large eddy simulation; Vortex shedding; Separation; Finite-height cylinders

Funding

  1. German Research Foundation
  2. Polytechnic University of Valencia

Ask authors/readers for more resources

The paper presents experimental and numerical results for the flow around a surface-mounted circular cylinder at the two height-to-diameter ratios of 2.5 and 5. The Reynolds number based on approach flow velocity and cylinder diameter is 43,000 and 22,000 for these two cases and the boundary layer of the approach flow has a thickness of about 10% of the cylinder height. The experiments comprise both flow visualizations with dye and laser Doppler velocimeter measurements of all mean velocity and fluctuation components. The numerical study is performed by an elaborate large eddy simulation on a staggered Cartesian grid using the immersed boundary method. The instantaneous flow behaviour including the shedding is analysed with information based on animations. For the long cylinder alternating shedding is found to occur over most of the height while for the shorter cylinder the shedding is observed mainly near the ground where it is also mostly alternating but intermittently also symmetrical. The mean-flow behaviour is analysed with the aid of streamlines and contour plots of mean-velocity and fluctuation components in various planes and a detailed comparison of LES and LDV results is provided, showing generally good agreement. The LES with very fine resolution near the free end allow a detailed study of the complex flow in this region with owl-face topology on the end wall previously observed in experiments. Behind the cylinder, the longitudinal recirculation region, the downstream development of tip vortices and the emergence of trailing vortices further downstream are analysed. The sum of the results, together with those from previous studies that were reviewed extensively, provides a comprehensive picture of the very complex flow behaviour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available