4.7 Article

Molecular cloning, expression and antibacterial activity of goose-type lysozyme gene in Microptenus salmoides

Journal

FISH & SHELLFISH IMMUNOLOGY
Volume 82, Issue -, Pages 9-16

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2018.07.058

Keywords

Microptenus salmoides; G-type lysozyme gene; Immune; Heat stress; A. hydrophila challenge

Funding

  1. Key Project of Science and Technology Research from Education Department of Henan [17020014]
  2. Henan University of Science and Technology (China) [13480074]

Ask authors/readers for more resources

It is well known that lysozymes are key proteins to teleosts in the innate immune system and possess high bactericidal properties. In the present study, a g-type lysozyme gene was cloned from Microptenus salmoides. The g-type sequence consisted of 582 bp, which translated into a 193 amino acid (AA) protein (GenBank accession no: MH087462). The predicted molecular weight and theoretical isoelectric point were 21.36 kDa and 6.91 respectively and no signal peptide was observed. The qRT-PCR analysis showed that the g-type lysozyme gene was differentially expressed in various tissues under normal conditions and the highest g-type lysozyme level was observed in liver, gill and spleen while there seemed to be low expression in the muscle, heart and head kidney. The expression of g-type lysozyme was differentially upregulated in the spleen, gill and intestine after stimulation with heat stress and Aeromonas hydrophila (A. hydrophila). Under heat stress and A. hydrophila injection, the g-type lysozyme mRNA levels all in spleens, gill and intestine tissues increased significantly (P < 0.05), with the maximum levels attained at 12 h, 24 h (or 12 h) and 24 h. Thereafter, they all decreased significantly (P < 0.01) and the expression in gill returned to nearly the basal value within 72 h. Those results suggested that g-type lysozyme was involved in the immune response to heat stress and bacterial challenge. The cloning and expression analysis of the g-type lysozyme provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides. The g-type lysozyme gene perhaps also played an important role in the immune responses against bacterial invasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available