4.7 Article

Identification and functional characterization of a novel ferritin subunit from the tropical sea cucumber, Stichopus monotuberculatus

Journal

FISH & SHELLFISH IMMUNOLOGY
Volume 38, Issue 1, Pages 265-274

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2014.03.022

Keywords

Ferritin; Stichopus monotuberculatus; Anti-oxidation activity; Iron binding capacity; Innate immune defense

Funding

  1. Guangdong Province
  2. Key Projects in the National Science & Technology Pillar Program [2012BAD18B03]
  3. CAS Cooperation Program [2012B091100272]

Ask authors/readers for more resources

Ferritin is one of the major non-harm iron storage proteins that found in most cell types of animals, plants and microorganisms. In this study, a ferritin subunit named StmFer was identified from the sea cucumber (Stichopus monotuberculatus) and characterized functionally. The full-length cDNA of StmFer is 1184 bp in size with a 5'-untranslated region (UTR) of 131 bp, a 3'-UTR of 531 bp and an open reading frame of 522 bp that encoding a protein of 173 amino acids with a deduced molecular weight of 19.95 kDa. StmFer possesses both the ferroxidase center of vertebrate ferritin heavy subunit and iron nucleation sites of vertebrate ferritin light subunit. For the gene structure, StmFer contains only three exons separated by two introns. Higher levels of mRNA expression were noticed in intestine and coelomocyte of S. monotuberculans by northern blot analysis. In in vitro experiments performed in coelomocytes, transcriptional expression of StmFer showed the strongest response to polyriboinosinic polyribocytidylic acid [Poly (I:C)] (9.08 fold up-regulation), followed by lipopolysaccharides (LPS), ferrous chloride (FeCl2) and inactivated bacteria (Vibrio alginolyticus) (7.84, 7.41 and 4.90 fold up-regulation, respectively) after 3 h post-challenge. In addition, the anti-oxidation activity and iron binding capacity of recombinant ferritin protein were demonstrated in this study. As a whole, our study suggested that the ferritin from sea cucumber may play critical roles not only in the cellular and organismic iron homeostasis, but also in the innate immune defense. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available