4.6 Article

Modeling metal deposition in heat transfer analyses of additive manufacturing processes

Journal

FINITE ELEMENTS IN ANALYSIS AND DESIGN
Volume 86, Issue -, Pages 51-60

Publisher

ELSEVIER
DOI: 10.1016/j.finel.2014.04.003

Keywords

Additive manufacturing; Metal deposition; Element activation; Heat transfer

Ask authors/readers for more resources

Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion. In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times. (C) 2014 Elsevier B.V. All rights reserved

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available