4.5 Article

Evaluation of Effective Electrospinning Parameters Controlling Gelatin Nanofibers Diameter via Modelling Artificial Neural Networks

Journal

FIBERS AND POLYMERS
Volume 15, Issue 4, Pages 767-777

Publisher

KOREAN FIBER SOC
DOI: 10.1007/s12221-014-0767-x

Keywords

Gelatin; Nanofibers; Electrospinning; Modeling; ANN

Ask authors/readers for more resources

The aim of this work was to evaluate the effective parameters for prediction of the electrospun gelatin nanofibers diameter using artificial neural network (ANN) technique. The various sets of electrospinning process including temperature, applied voltage and polymer and solvent concentrations were designed to produce pure gelatin nanofibers. The obtained results by analyzing Scanning Electron Microscopy (SEM) images indicated that the produced nanofibers diameter was in the range of 85 to 750 nm. Due to the volume of the data, k fold cross-validation method was used for data setting. Data were divided into the five categories and trained and tested using ANN technique. The results indicated that the network including 4 input variables, 3 hidden layers with 10, 18 and 9 nodes in each layers, respectively, and one output layer had the best performance in the testing sets. The mean squared error (MSE) and linear regression (R) between observed and predicted nanofibers diameter were 0.1531 and 0.9424, respectively. The obtained results demonstrated that the selected neural network model had acceptable performance for evaluating involved parameters and prediction of nanofibers diameter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available