4.3 Article

Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes

Journal

FEMS YEAST RESEARCH
Volume 12, Issue 1, Pages 61-68

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1567-1364.2011.00761.x

Keywords

Candida albicans; pentose phosphate pathway; 6-phosphogluconate dehydrogenase; Gnd1; Zwf1; peroxisomal targeting signal type II; alternative splicing

Ask authors/readers for more resources

The pentose phosphate pathway (PPP) is the main source of NADPH in the cell and therefore essential for the maintenance of the redox balance and anabolic reactions. NADPH is produced by the two dehydrogenases in the oxidative branch of the PPP: glucose-6-phosphate dehydrogenase (Zwf1) and 6-phosphogluconate dehydrogenase (Gnd1). We observed that in the commensal fungus Candida albicans these two enzymes contain putative peroxisomal targeting signals (PTSs): Zwf1 has a putative PTS1, while the annotated intron of GND1 encodes a PTS2. By subcellular fractionation and fluorescence microscopy, we show that both enzymes have a dual localization in which the majority is cytosolic, but a small fraction is peroxisome associated. Analysis of GND1 transcripts revealed that dual targeting of Gnd1 is directed by alternative splicing resulting in two Gnd1 isoforms, one without targeting signals localized to the cytosol and one with an N-terminal PTS2 targeted to peroxisomes. To our knowledge, Gnd1 is the first example of dual targeting of a protein by alternative splicing in C.albicans. In silico analysis suggests that PTS-mediated peroxisomal targeting of Zwf1 and Gnd1 is conserved across closely related Candida species. We discuss putative functions of the peroxisomal oxidative PPP in these organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available