4.3 Article

Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets

Journal

FEMS MICROBIOLOGY LETTERS
Volume 333, Issue 1, Pages 20-27

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1574-6968.2012.02594.x

Keywords

multidrug resistance; pathogen; Pseudomonas aeruginosa; antibiotics; RND transporter; MexB

Categories

Ask authors/readers for more resources

Drug efflux pumps such as MexAB-OprM from Pseudomonas aeruginosa confer resistance to a wide range of chemically different compounds. Within the tripartite assembly, the inner membrane protein MexB is mainly responsible for substrate recognition. Recently, considerable advances have been made in elucidating the drug efflux pathway through the large periplasmic domains of resistancenodulationdivision (RND) transporters. However, little is known about the role of amino acids in other parts of the protein. We have investigated the role of two conserved phenylalanine residues that are aligned around the cytoplasmic side of the central cavity of MexB. The two conserved phenylalanine residues have been mutated to alanine residues (FAFA MexB). The interaction of the wild-type and mutant proteins with a variety of drugs from different classes was investigated by assays of cytotoxicity and drug transport. The FAFA mutation affected the efflux of compounds that have targets inside the cell, but antibiotics that act on cell wall synthesis and membrane probes were unaffected. Combined, our results indicate the presence of a hitherto unidentified cytoplasmic-binding site in RND drug transporters and enhance our understanding of the molecular mechanisms that govern drug resistance in Gram-negative pathogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available