4.5 Article

Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques

Journal

FEMS MICROBIOLOGY ECOLOGY
Volume 71, Issue 2, Pages 237-246

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1574-6941.2009.00809.x

Keywords

toluene; stable isotope probing (SIP); in situ microcosm; sulfate-reducing; biodegradation

Categories

Funding

  1. Helmholtz Centre for Environmental Research-UFZ
  2. European Union [213161]

Ask authors/readers for more resources

A toluene-degrading microbial consortium was enriched directly in a BTEX-contaminated aquifer under sulfate-reducing conditions using in situ microcosms consisting of toluene-loaded activated carbon pellets. Degradation of toluene and concomitant sulfide production by the consortium was subsequently demonstrated in laboratory microcosms. The consortium was physiologically and phylogenetically characterized by isotope tracer experiments using nonlabeled toluene, [13C]-alpha-toluene or [13C(7)]-toluene as growth substrates. Cells incubated with [13C]-alpha-toluene or [13C(7)]-toluene incorporated 8-15 at.% 13C and 51-57 at.% 13C into total lipid fatty acids, respectively, indicating a lower specific incorporation of 13C from [13C(7)]-toluene. In order to identify the toluene-assimilating bacteria, the incorporation of carbon from both [13C]-alpha-toluene and [13C(7)]-toluene into rRNA was analyzed by stable isotope probing. Time and buoyant density-resolved 16S rRNA gene-based terminal restriction fragment length polymorphism profiles, combined with cloning and sequencing, revealed that an uncultured bacterium (99% sequence similarity) related to the genus Desulfocapsa was the main toluene-degrading organism in the consortium. The ratio of the respective terminal restriction fragments changed over time, indicating trophic interactions within this consortium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available