4.5 Article

Microbial communities in contrasting freshwater marsh microhabitats

Journal

FEMS MICROBIOLOGY ECOLOGY
Volume 69, Issue 1, Pages 84-97

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1574-6941.2009.00692.x

Keywords

bacteria; fungi; DGGE; wetland; freshwater; Phragmites

Categories

Funding

  1. ETH Zurich [0-23010-00]
  2. Swiss National Science Foundation [3100-050439.97]

Ask authors/readers for more resources

Heterotrophic microorganisms are widely recognized as crucial components of ecosystems; yet information on their community structure and dynamics in benthic freshwater habitats is notably scarce. Using denaturing gradient gel electrophoresis (DGGE), we determined the composition of bacterial and fungal communities in a freshwater marsh over four seasons. DGGE revealed diverse bacterial communities in four contrasting microhabitats. The greatest compositional differences emerged between water-column and surface-associated bacteria, although communities associated with sediment also differed from those on plant litter and epiphytic biofilms. Sequences of bacterial clones derived from DGGE bands belonged to the Alphaproteobacteria (31%), Actinobacteria (19%) and Bacteriodetes (19%). Betaproteobacteria were notably absent. Fungal clones obtained from leaf litter were mainly Ascomycota, but two members of the Basidiomycota were also identified. Overall, habitat type was the most important factor explaining variation in bacterial communities among samples, whereas temporal patterns in community composition were less pronounced in spite of large seasonal variation in environmental conditions such as temperature. The observed differences among bacterial communities in different microhabitats were not caused by random variation, but rather appeared to be determined by habitat characteristics, as evidenced by largely congruent community profiles of replicate samples taken at 10-100 m distances within the marsh.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available