4.5 Article

Selective grazing of methanotrophs by protozoa in a rice field soil

Journal

FEMS MICROBIOLOGY ECOLOGY
Volume 65, Issue 3, Pages 408-414

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1574-6941.2008.00511.x

Keywords

flagellate; grazing preference; methane-oxidizing bacteria; naked amoeba; MPN; protist

Categories

Ask authors/readers for more resources

Biological methane oxidation is a key process in the methane cycle of wetland ecosystems. The methanotrophic biomass may be grazed by protozoa, thus linking the methane cycle to the soil microbial food web. In the present study, the edibility of different methanotrophs for soil protozoa was compared. The number of methanotroph-feeding protozoa in a rice field soil was estimated by determining the most-probable number (MPN) using methanotrophs as food bacteria; naked amoebae and flagellates were the dominant protozoa. Among ten methanotrophic strains examined as a food source, seven yielded a number of protozoa comparable with the yield with Escherichia coli [10(4) MPN (g soil dry weight)(-1)], and three out of four Methylocystis spp. yielded significantly fewer numbers [10(2)-10(3) MPN (g soil dry weight)(-1)]. The lower edibility of the Methylocystis spp. was not explained either by their growth phase or by harmful effects on protozoa. Incubation of the soil under methane resulted in a higher number of protozoa actively grazing on methanotrophs, especially on the less-edible group. Protozoa isolated from the soil demonstrated a grazing preference on the different methanotrophs consistent with the results of MPN counts. The results indicate that selective grazing by protozoa may be a biological factor affecting the methanotrophic community in a wetland soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available