4.5 Article

Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi

Journal

FEMS MICROBIOLOGY ECOLOGY
Volume 65, Issue 2, Pages 299-309

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1574-6941.2008.00491.x

Keywords

bacterial diversity; ectomycorrhiza; Pseudotsuga menziesii; terminal restriction fragment length polymorphism

Categories

Ask authors/readers for more resources

We studied the effect of ectomycorrhizal fungi on bacterial communities colonizing roots of Douglas fir (Pseudotsuga menziesii). Mycorrhizal tips were cleaned of soil and separated based on gross morphological characteristics. Sequencing of the internal transcribed spacers of the nuclear rRNA gene cluster indicated that the majority of the tips were colonized by fungi in the Russulaceae, with the genera Russula and Lactarius comprising 70% of the tips. Because coamplification of organellar 16S rRNA genes can interfere with bacterial community analysis of root tips, we developed and tested a new primer pair that permits amplification of bacterial 16S rRNA genes but discriminates more effectively against organellar sequences than commonly used bacterial primer sets. We then used terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of the 16S rRNA gene to examine differences in bacterial communities associated with the mycorrhizal tips. Cluster analysis of T-RFLP profiles indicated that there were different bacterial communities among the root tips; however, the communities did not seem to be affected by the taxonomic identity of the ectomycorrhizal fungi. Terminal restriction fragment profiling and sequencing of cloned partial 16S rRNA genes indicated that most bacteria on the ectomycorrhizal tips were related to the Alphaproteobacteria and the Bacteroidetes group.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available