4.5 Article

Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single-cell force spectroscopy

Journal

FEBS LETTERS
Volume 588, Issue 19, Pages 3639-3648

Publisher

WILEY
DOI: 10.1016/j.febslet.2014.06.012

Keywords

Atomic force microscopy; Collagen I; Fibronectin; Trypsin; Ethylenediaminetetraacetic acid; Extracellular matrix

Funding

  1. Swiss National Science Foundation

Ask authors/readers for more resources

Single-cell force spectroscopy (SCFS) is becoming a widely used method to quantify the adhesion of a living cell to a substrate, another cell or tissue. The high sensitivity of SCFS permits determining the contributions of individual cell adhesion molecules (CAMs) to the adhesion force of an entire cell. However, to prepare adherent cells for SCFS, they must first be detached from tissue-culture flasks or plates. EDTA and trypsin are often applied for this purpose. Because cellular properties can be affected by this treatment, cells need to recover before being further characterized by SCFS. Here we introduce atomic force microscopy (AFM)-based SCFS to measure the mechanical and adhesive properties of HeLa cells and mouse embryonic kidney fibroblasts while they are recovering after detachment from tissue-culture. We find that mechanical and adhesive properties of both cell lines recover quickly (<10 min) after detachment using EDTA, while trypsin-detached fibroblasts require >60 min to fully recover. Our assay introduced to characterize the recovery of mammalian cells after detachment can in future be used to estimate the recovery behavior of other adherent cell types. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available