4.5 Article

Searching for the mechanism of signalling by plant photoreceptor cryptochrome

Journal

FEBS LETTERS
Volume 589, Issue 2, Pages 189-192

Publisher

WILEY
DOI: 10.1016/j.febslet.2014.12.008

Keywords

Plant cryptochrome; Photoreceptor; Signalling; ATP; HY5; Constitutive Photomorphogenic 1

Funding

  1. Agence Nationale de la Recherche [ANR-12-BSV8-0001-01]
  2. Agence Nationale de la Recherche (ANR) [ANR-12-BSV8-0001] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Even though the plant photoreceptors cryptochromes were discovered more than 20 years ago, the mechanism through which they transduce light signals to their partner molecules such as COP1 (Constitutive Photomorphogenic 1) or SPA1 (Suppressor of Phytochrome A) still remains to be established. We propose that a negative charge induced by light in the vicinity of the flavin chromophore initiates cryptochrome 1 signalling. This negative charge might expel the protein-bound ATP from the binding pocket, thereby pushing off the C-terminus that covers the ATP pocket in the dark state of the protein. This conformational change should allow for phosphorylation of previously inaccessible amino acids. A partially phosphorylated 'ESSSSGRR-VPE' fragment of the C-terminus could mimic the sequence of the transcription factor HY5 that is essential for binding to the negative regulator of photomorphogenesis COP1. HY5 release through competition for the COP1 binding site could represent the long-sought connection between light activation of cryptochrome and modulation of photomorphogenesis. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available