4.5 Article

Nm23-M5 mediates round and elongated spermatid survival by regulating GPX-5 levels

Journal

FEBS LETTERS
Volume 583, Issue 8, Pages 1292-1298

Publisher

WILEY
DOI: 10.1016/j.febslet.2009.03.023

Keywords

Nm23; Mouse; Testis; Spermiogenesis; shRNA; Knock-down

Funding

  1. Research Project of ARPC, South Korea

Ask authors/readers for more resources

Nucleoside diphosphate (NDP) kinases are involved in numerous regulatory processes associated with proliferation, development, and differentiation. Previously, we cloned a new member of the NDPK family from mouse, Nm23-M5, which encodes a 211-amino acid protein and has 86% identity to the human Nm23-H5 [Hwang, K.C., Ok, D. W., Hong, J.C., Kim, M.O. and Kim, J. H. (2003) Cloning, sequencing, and characterization of the murine Nm23-M5 gene during mouse spermatogenesis and spermiogenesis. Biochem. Biophys. Res. Commun. 306, 198-207]. To better understand Nm23-M5 function, we generated transgenic mice with reduced Nm23-M5 levels in vivo using a short hairpin RNA (shRNA) knock-down system. Nm23-M5 expression was markedly reduced, as indicated by Northern and Western blot analysis. Nm23-M5 shRNA transgenic mice exhibited reduced numbers of haploid cells. Furthermore, the antioxidant enzyme glutathione peroxidase 5 (GPX-5) is regulated by Nm23-M5 at the level of both expression and activity. These results reveal that expression of Nm23-M5 plays a critical role in spermiogenesis by increasing the cellular levels of GPX-5 to eliminate reactive oxygen species. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available