4.6 Article

The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties

Journal

FEBS JOURNAL
Volume 280, Issue 1, Pages 214-232

Publisher

WILEY
DOI: 10.1111/febs.12062

Keywords

biomineralization; evolution; mantle; mollusc shell matrix proteins; proteome

Funding

  1. ANR Accro-Earth [BLAN06-2_159971]
  2. BIOMINTEC
  3. INTERRVIE program
  4. DFG

Ask authors/readers for more resources

Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO3 deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO3 shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross-lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low-complexity domain-containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium-binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage-specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays. Database Novel protein sequences reported in this article have been deposited in Swiss-Prot database under accession nos. B3A0P1B3A0S4

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available