4.6 Article

Energetic coupling along an allosteric communication channel drives the binding of Jun-Fos heterodimeric transcription factor to DNA

Journal

FEBS JOURNAL
Volume 278, Issue 12, Pages 2090-2104

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1742-4658.2011.08124.x

Keywords

allosteric communication; AP1-DNA thermodynamics; cooperative binding; energetic coupling; isothermal titration calorimetry

Funding

  1. National Institutes of Health [R01-GM083897, T32-CA119929]
  2. USylvester Braman Family Breast Cancer Institute

Ask authors/readers for more resources

Although allostery plays a central role in driving protein-DNA interactions, the physical basis of such cooperative behavior remains poorly understood. In the present study, using isothermal titration calorimetry in conjunction with site-directed mutagenesis, we provide evidence that an intricate network of energetically-coupled residues within the basic regions of the Jun-Fos heterodimeric transcription factor accounts for its allosteric binding to DNA. Remarkably, energetic coupling is prevalent in residues that are both close in space, as well as residues distant in space, implicating the role of both short- and long-range cooperative interactions in driving the assembly of this key protein-DNA interaction. Unexpectedly, many of the energetically-coupled residues involved in orchestrating such a cooperative network of interactions are poorly conserved across other members of the basic zipper family, emphasizing the importance of basic residues in dictating the specificity of basic zipper-DNA interactions. Collectively, our thermodynamic analysis maps an allosteric communication channel driving a key protein-DNA interaction central to cellular functions in health and disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available