4.6 Review

Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity

Journal

FEBS JOURNAL
Volume 277, Issue 22, Pages 4602-4613

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1742-4658.2010.07889.x

Keywords

amyloid; amyloid cytotoxicity; amyloid diseases; amyloid oligomers; cell membranes

Funding

  1. Ente Cassa di Risparmio di Firenze
  2. Italian MIUR [PRIN 2007XY59ZJ]

Ask authors/readers for more resources

A great deal must still be learnt on the structural features of amyloid assemblies, particularly prefibrillar aggregates, and the relationship of the latter with amyloid cytotoxicity. Presently, it is recognized that the population of unstable, heterogeneous amyloid oligomers and protofibrils is mainly responsible for amyloid cytotoxicity. Conversely, mature fibrils are considered stable, harmless reservoirs of molecular species devoid of toxicity in the polymerized state. This view has been modified by recent reports showing that mature fibrils grown at different conditions can display different structural features and stabilities, possibly leading them to undergo disassembly with the leak of toxic oligomers. Fibril polymorphism is paralleled by oligomer polymorphism and both can be traced back to amyloid growth from differently destabilized monomers with distinct structural features at differing conditions. Recent research has started to unravel oligomer structural and biophysical features and the relationship between the latter and oligomer cytotoxicity. These data have led to the proposal that, together, both oligomer and membrane physical features determine the extent of oligomer-membrane interaction with the resulting disruption of membrane integrity and cell impairment. Such a view can help to explain the variable vulnerability of different cell types to the same amyloids and the lack of relationship between amyloid load and the severity of clinical symptoms. It also stresses the importance, for cell/tissue impairment, of the presence, in tissue, in addition to toxic oligomers, of fibrils conformers of reduced stability as a possible source of toxic oligomers, whose leakage can be favoured upon interaction with suitable surfaces or by other environmental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available