4.6 Article

Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2

Journal

FEBS JOURNAL
Volume 278, Issue 1, Pages 85-96

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1742-4658.2010.07929.x

Keywords

granulocyte-colony stimulating factor (G-CSF); inducible nitric oxide synthase (iNOS); lipopolysaccharide (LPS); macrophage; mammalian target of rapamycin (mTOR); octamer-binding factor-2 (Oct-2); rapamycin

Funding

  1. National Science Council of Taiwan [NSC97-2320-B-002-057-MY3, NSC99-2320-B-038-009-MY3]

Ask authors/readers for more resources

This article reports an inhibitory effect of rapamycin on the lipopolysaccharide (LPS)-induced expression of both inducible nitric oxide synthase (iNOS) and granulocyte-colony stimulating factor (G-CSF) in macrophages and its underlying mechanism. The study arose from an observation that rapamycin inhibited the LPS-induced increase in octamer-binding factor-2 (Oct-2) protein levels through a mammalian target of rapamycin (mTOR)-dependent pathway in mouse RAW264.7 macrophages. As both iNOS and G-CSF are potential Oct-2 target genes, we tested the effect of rapamycin on their expression and found that it reduced the LPS-induced increase in iNOS and G-CSF mRNA levels and iNOS and G-CSF protein levels. Blocking of mTOR-signaling using a dominant-negative mTOR expression plasmid resulted in inhibition of the LPS-induced increase in iNOS and G-CSF protein levels, supporting the essential role of mTOR. Forced expression of Oct-2 using the pCG-Oct-2 plasmid overcame the inhibitory effect of rapamycin on the LPS-induced increase in iNOS and G-CSF mRNA levels. Chromatin immunoprecipitation assays showed that LPS enhanced the binding of Oct-2 to the iNOS and G-CSF promoters and that this effect was inhibited by pretreatment with rapamycin. Moreover, RNA interference knockdown of Oct-2 reduced iNOS and G-CSF expression in LPS-treated cells. The inhibitory effect of rapamycin on the LPS-induced increase in Oct-2 protein levels and on the iNOS and G-CSF mRNA levels was also detected in human THP-1 monocyte-derived macrophages. This study demonstrates that rapamycin reduces iNOS and G-CSF expression at the transcription level in LPS-treated macrophages by inhibiting Oct-2 expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available