4.6 Article

Characterization of the restriction enzyme-like endonuclease encoded by the Entamoeba histolytica non-long terminal repeat retrotransposon EhLINE1

Journal

FEBS JOURNAL
Volume 276, Issue 23, Pages 7070-7082

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2009.07419.x

Keywords

EhLINE; Entamoeba histolytica; nicking endonuclease; restriction endonuclease-like endonuclease (RE-like endonuclease); retrotransposon-encoded endonuclease

Funding

  1. Department of Science and Technology and Department of Biotechnology, India

Ask authors/readers for more resources

The genome of the human pathogen Entamoeba histolytica, a primitive protist, contains non-long terminal repeat retrotransposable elements called EhLINEs. These encode reverse transcriptase and endonuclease required for retrotransposition. The endonuclease shows sequence similarity with bacterial restriction endonucleases. Here we report the salient enzymatic features of one such endonuclease. The kinetics of an EhLINE1-encoded endonuclease catalyzed reaction, determined under steady-state and single-turnover conditions, revealed a significant burst phase followed by a slower steady-state phase, indicating that release of product could be the slower step in this reaction. For circular supercoiled DNA the K-m was 2.6 x 10-8 m and the k(cat) was 1.6 x 10-2 sec-1. For linear E. histolytica DNA substrate the K-m and k(cat) values were 1.3 x 10-8 m and 2.2 x 10-4 sec-1 respectively. Single-turnover reaction kinetics suggested a noncooperative mode of hydrolysis. The enzyme behaved as a monomer. While Mg2+ was required for activity, 60% activity was seen with Mn2+ and none with other divalent metal ions. Substitution of PDX12-14D (a metal-binding motif) with PAX(12-14)D caused local conformational change in the protein tertiary structure, which could contribute to reduced enzyme activity in the mutated protein. The protein underwent conformational change upon the addition of DNA, which is consistent with the known behavior of restriction endonucleases. The similarities with bacterial restriction endonucleases suggest that the EhLINE1-encoded endonuclease was possibly acquired from bacteria through horizontal gene transfer. The loss of strict sequence specificity for nicking may have been subsequently selected to facilitate spread of the retrotransposon to intergenic regions of the E. histolytica genome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available