4.7 Article

CrbpI regulates mammary retinoic acid homeostasis and the mammary microenvironment

Journal

FASEB JOURNAL
Volume 27, Issue 5, Pages 1904-1916

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.12-219410

Keywords

vitamin A; breast cancer; Rbp1; retinoids

Funding

  1. University of Maryland, Department of Pharmaceutical Sciences New Faculty Start-Up funds

Ask authors/readers for more resources

Cellular retinol-binding protein, type I (CrbpI), encoded by retinol-binding protein, type 1 (Rbp1), is a chaperone of vitamin A (retinol) that is epigenetically silenced in similar to 25% of human breast cancers. CrbpI delivers vitamin A to enzymes for metabolism into an active metabolite, all-trans retinoic acid (atRA), where atRA is essential to cell proliferation, apoptosis, differentiation, and migration. Here, we show the effect of CrbpI loss on mammary atRA homeostasis using the Rbp1(-/-) mouse model. Rbp1(-/-) mouse mammary tissue has disrupted retinoid homeostasis that results in 40% depleted endogenous atRA. CrbpI loss and atRA depletion precede defects in atRA biosynthesis enzyme expression. Compensation by CrbpIII as a retinoid chaperone does not functionally replace CrbpI. Mammary subcellular fractions isolated from Rbp1(-/-) mice have altered retinol dehydrogenase/reductase (Rdh) enzyme activity that results in 24-42% less atRA production. Rbp1(-/-) mammary tissue has epithelial hyperplasia, stromal hypercellularity, increased collagen, and increased oxidative stress characteristic of atRA deficiency and early tissue dysfunction that precedes tumor formation. Consistent with the findings from the Rbp1(-/-) mouse, tumorigenic epithelial cells lacking CrbpI expression produce 51% less atRA. Together, these data show that CrbpI loss disrupts atRA homeostasis in mammary tissue, resulting in microenvironmental defects similar to those observed at the early stages of tumorigenesis.-Pierzchalski, K., Yu, J., Norman, V., Kane, M. A. CrbpI regulates mammary retinoic acid homeostasis and the mammary microenvironment. FASEB J. 27, 1904-1916 (2013). www.fasebj.org

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available