4.7 Article

Regulation of hypoxic neuronal death signaling by neuroglobin

Journal

FASEB JOURNAL
Volume 22, Issue 6, Pages 1737-1747

Publisher

WILEY
DOI: 10.1096/fj.07-100784

Keywords

soma; polarity; DISC; death-inducing signaling complex

Funding

  1. NINDS NIH HHS [P01 NS035965, P01 NS035965-080002, NS35965] Funding Source: Medline

Ask authors/readers for more resources

The signal transduction pathways involved in neuronal death are not well understood. Neuroglobin (Ngb), a recently discovered vertebrate globin expressed predominantly in the brain, shows increased expression in neurons in response to oxygen deprivation and protects neurons from ischemic and hypoxic death. The mechanism of this neuroprotection is unclear. We examined the surface distribution of raft membrane microdomains in cortical neuron cultures during hypoxia using the raft marker cholera toxin B (CTx-B) subunit. Mechanistically, we demonstrate that hypoxia induces rapid polarization of somal membranes and aggregation of microdomains with the subjacent mitochondrial network. This signaling complex is formed well before neurons commit to die, consistent with an early role in death signal transduction. Neurons from Ngb-overexpressing transgenic (Ngb-Tg) mice do not undergo microdomain polarization or mitochondrial aggregation in response to, and are resistant to death from hypoxia. We link the protective actions of Ngb to inhibition of Pak1 kinase activity and Rac1-GDP-dissociation inhibitor disassociation, and inhibition of actin assembly and death-signaling module polarization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available