4.7 Article

Vibrissa hair bulge houses two populations of skin epithelial stem cells distinct by their keratin profile

Journal

FASEB JOURNAL
Volume 22, Issue 5, Pages 1404-1415

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.07-8109com

Keywords

intermediate filaments; tissue engineering; transmission electron microscopy; rodent

Funding

  1. NIAMS NIH HHS [AR44232, AR42047] Funding Source: Medline

Ask authors/readers for more resources

Defining the properties of postnatal stem cells is of interest given their relevance for tissue homeostasis and therapeutic applications, such as skin tissue engineering for burn patients. In hair follicles, the bulge region of the outer root sheath houses stem cells. We show that explants from the prominent bulge area, but not the bulb, in rodent vibrissa follicles can produce epidermis in a skin model of tissue engineering. Using morphological criteria and keratin expression, we typified epithelial stem cells of vibrissa bulge. Two types of slow-cycling cells (Bb, Bs1) featuring a high colony-forming capacity occur in the bulge. Bb cells are located in the outermost basal layer, express K5, K15, K17, and K19, and feature a loosely organized keratin network. Bs1 cells localize to the suprabasal layers proximal to Bb cells and express K5/K17, correlating with a network of densely bundled filaments. These prominent bundles are missing in K17-null mice, which lack vibrissa. Atypically, both the Bb and Bs1 keratinocytes lack K14 expression. These findings show heterogeneity within the hair follicle stem cell repository, establish that a subset of slow-cycling cells are suprabasal in location, and point to a special role for K5/K17 filaments in a newly defined subset of stem cells. Our results are discussed in the context of long-term survival of engineered tissues after grafting that requires the presence of stem cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available