4.2 Article

Analysis of hydrogen storage in nanoporous materials for low carbon energy applications

Journal

FARADAY DISCUSSIONS
Volume 151, Issue -, Pages 59-74

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0fd00010h

Keywords

-

Funding

  1. Engineering and Physical Science Research Council (EPSRC)
  2. United Kingdom Sustainable Hydrogen Energy Consortium (UK-SHEC) [EP/E040071/1]

Ask authors/readers for more resources

A robust, simple methodology for analysis of isotherms for the adsorption of fluids above their critical temperature onto nanostructured materials is presented. The analysis of hydrogen adsorption in a metal-organic framework is used as an example to illustrate the methodology, which allows the estimation of the absolute adsorption into nanoporous systems. Further advantages of employing this analysis are that adsorption systems can be described using a small number of parameters, and that excess and absolute isotherms can be extrapolated and used to predict adsorption behaviour at higher pressures and over different temperature ranges. Thermodynamic calculations, using the exact Clapeyron equation and the Clausius-Clapeyron approximation applied to the example dataset, are presented and compared. Conventional compression of hydrogen and adsorptive storage are evaluated, with an illustration of the pressure ranges in which adsorption facilitates storage of greater volumes of hydrogen than normal compression in the same operating conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available