4.4 Article

Specific interactions, structure and properties in segmented polyurethane elastomers

Journal

EXPRESS POLYMER LETTERS
Volume 5, Issue 5, Pages 417-427

Publisher

BUDAPEST UNIV TECHNOL & ECON
DOI: 10.3144/expresspolymlett.2011.41

Keywords

biocompatible polymers; polyurethane elastomer; specific interactions; phase separation; physical cross-links

Funding

  1. National Scientific Research Fund of Hungary (OTKA) [K 68748]
  2. New Hungary Development Plan [TAMOP-4.2.1/B-09/1/KMR-2010-0002]

Ask authors/readers for more resources

Two sets of segmented polyurethane (PU) elastomers were prepared from 4,4'-methylenebis(phenyl isocyanate) (MDI), 1,4-butanediol (BD) and a polyester or a polyether polyol, respectively. The molecular mass of both polyols was 1000 g/mol. The stoichiometric ratio of isocyanate and hydroxyl groups was 1 and the polyol/total diol ratio changed from 0 to 1 in 0.1 steps. One step bulk polymerization was carried out in an internal mixer and the samples were compression molded for testing. The results proved that specific interactions determine the phase structure and properties of these materials. Crystallinity was approximately the same in the two types of polyurethanes and the amount of relaxing soft segments was also similar. The determination of interaction parameters from solvent absorption and differences in glass transition temperatures indicated stronger interaction between hard and soft segments in the polyester than in the polyether polyurethane. Larger transparency of the polyester PU indicated the formation of smaller dispersed particles of the hard phase. The larger number of smaller hard phase units led to the formation of more physical cross-links distributed more evenly in the polymer. These differences in the phase structure of the polymers resulted in stronger strain hardening tendency, larger strength and smaller deformations for the polyester than for the polyether polyurethane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available