4.7 Article

Exploring dimensionality reduction of EEG features in motor imagery task classification

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 41, Issue 11, Pages 5285-5295

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2014.02.043

Keywords

Brain-computer interfaces; Electroencephalogram signals; Motor imagery; Dimensionality reduction; Feature transformation; Linear discriminants; Local Fisher Discriminant Analysis

Ask authors/readers for more resources

A Brain-Computer Interface (BCI) system based on motor imagery (MI) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches - Principal Component Analysis and Locality Preserving Projections - and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available