4.7 Article

Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 39, Issue 9, Pages 7822-7833

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2012.01.070

Keywords

Multi-objective genetic algorithms; Optimal placement; Structural control; ASCE control benchmark; Actuator location; Sensor location

Ask authors/readers for more resources

This paper proposes a multi-objective genetic algorithm (MOGA) for optimal placements of control devices and sensors in seismically excited civil structures through the integration of an implicit redundant representation genetic algorithm with a strength Pareto evolutionary algorithm 2. Not only are the total number and locations of control devices and sensors optimized, but dynamic responses of structures are also minimized as objective functions in the multi-objective formulation, i.e., both cost and seismic response control performance are simultaneously considered in structural control system design. The linear quadratic Gaussian control algorithm, hydraulic actuators and accelerometers are used for synthesis of active structural control systems on large civil structures. Three and twenty-story benchmark building structures are considered to demonstrate the performance of the proposed MOGA. It is shown that the proposed algorithm is effective in developing optimal Pareto front curves for optimal placement of actuators and sensors in seismically excited large buildings such that the performance on dynamic responses is also satisfied. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available