4.7 Article

Designing a sustainable supply chain using an integrated analytic network process and goal programming approach in quality function deployment

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 38, Issue 11, Pages 13731-13748

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2011.04.171

Keywords

Sustainable supply chain; Analytic network process; Zero one goal programming; Quality function deployment

Ask authors/readers for more resources

Sustainable supply chain management (SSCM) provides economic, social end environmental requirements in material and service flows occurring between suppliers, manufacturers and customers. SSCM structure is considered as a prerequisite for a sustainable success. Thus designing an effective SCM structure provides competitive advantages for the companies. In order to achieve an effective design of this structure, it is possible to apply quality function deployment (QFD) approach which is successfully applied as an effective product and system development tool. This study presents a decision framework where analytic network process (ANP) integrated QFD and zero-one goal programming (ZOGP) models are used in order to determine the design requirements which are more effective in achieving a sustainable supply chain (SSC). The first phase of the QFD is the house of quality (HOQ) which transforms customer requirements into product design requirements. In this study, after determining the sustainability requirements named customer requirements (CRs) and design requirements (DRs) of a SSC, ANP is employed to determine the importance levels in the HOQ considering the interrelationships among the DRs and CRs. Furthermore ZOGP approach is used to take into account different objectives of the problem. The proposed method is applied through a case study and obtained results are discussed. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available