4.6 Article

Interaction of CuS and Sulfur in Li-S Battery System

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 162, Issue 14, Pages A2834-A2839

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1021514jes

Keywords

-

Funding

  1. U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy under the Advanced Battery Materials Research (BMR) program [DE-SC0012704]
  2. DOE, Office of Basic Energy Sciences [DE-SC0012704]

Ask authors/readers for more resources

The Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithium-ion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacity-contributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, under a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. We identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available