4.6 Article

Electrochemical Performance of Carbon/MnO2 Nanocomposites Prepared via Molecular Bridging as Supercapacitor Electrode Materials

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 162, Issue 5, Pages A5179-A5184

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0221505jes

Keywords

-

Ask authors/readers for more resources

The chemical binding of amorphous manganese oxide and carbon particles was achieved with the diazonium chemistry. The synthesis was performed in two steps, with a first step consisting in the surface functionnalization of carbon particles with aminophenyl groups and the subsequent attachment of amorphous manganese oxide particles through generated phenyl groups. The bond between carbon and MnO2 particles is believed to occur between the carbon from the phenyl groups attached to carbon particles, and the oxygen atoms from the manganese oxide lattice. The capacitance of the carbon/MnO2 grafted nanocomposite electrode is doubled compared to a simple mixture of its two components. The capacitance of the nanocomposite electrode is also retained for faster cycling rates, thus highlighting the role of intimate coupling of carbon and MnO2. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available