4.6 Article

A Parametric Open Circuit Voltage Model for Lithium Ion Batteries

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 162, Issue 12, Pages A2271-A2280

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0331512jes

Keywords

-

Funding

  1. EPSRC UK
  2. Jaguar Land Rover Ltd
  3. EPSRC [EP/I029273/1, EP/I029273/2] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [1181274, EP/I029273/1, EP/I029273/2] Funding Source: researchfish

Ask authors/readers for more resources

We present an open circuit voltage (OCV) model for lithium ion (Li-ion) cells, which can be parameterized by measurements of the OCV of positive and negative electrode half-cells and a full cell. No prior knowledge of physical parameters related to particular cell chemistries is required. The OCV of the full cell is calculated from two electrode sub-models, which are comprised of additive terms that represent the phase transitions of the active electrode materials. The model structure is flexible and can be applied to any Li-ion cell chemistry. The model can account for temperature dependence and voltage hysteresis of the OCV. Fitting the model to OCV data recorded from a Li-ion cell at 0 degrees C, 10 degrees C; 20 degrees C, 30 degrees C and 40 degrees C yielded high accuracies with errors (RMS) of less than 5 mV. The model can be used to maintain the accuracy of dynamic Li-ion cell models in battery management systems by accounting for the effects of capacity fade on the OCV. Moreover, the model provides a means to separate the cell's OCV into its constituent electrode potentials, which allows the electrodes' capacities to be tracked separately over time, providing an insight into prevalent degradation mechanisms acting on the individual electrodes. (C) The Author(s) 2015. Published by ECS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available