4.4 Article

Analysis and reconstruction of a pulsed jet in crossflow by multi-plane snapshot POD

Journal

EXPERIMENTS IN FLUIDS
Volume 47, Issue 4-5, Pages 707-720

Publisher

SPRINGER
DOI: 10.1007/s00348-009-0730-6

Keywords

-

Funding

  1. 13th CPER
  2. ANR VIVE3D

Ask authors/readers for more resources

In this work, snapshot proper orthogonal decomposition (POD) is used to study a pulsed jet in crossflow where the velocity fields are extracted from stereoscopic particle image velocimetry (SPIV) results. The studied pulsed jet is characterized by a frequency f = 1 Hz, a Reynolds number Re(j) = 500 (based on the mean jet velocity (U) over bar (j) = 1.67 cm/s and a mean velocity ratio of R = 1). Pulsed jet and continuous jet are compared via mean velocity field trajectory and Q criterion. POD results of instantaneous, phase-averaged and fluctuating velocity fields are presented and compared in this paper. Snapshot POD applied on one plane allows us to distinguish an organization of the first spatial eigenmodes. A distinction between natural modes'' and pulsed modes'' is achieved with the results obtained by the pulsed and unforced jet. Secondly, the correlation tensor is established with four parallel planes (multi-plane snapshot POD) for the evaluation of volume spatial modes. These resulting modes are interpolated and the volume velocity field is reconstructed with a minimal number of modes for all the times of the pulsation period. These reconstructions are compared to orthogonal measurements to the transverse jet in order to validate the obtained three-dimensional velocity fields. Finally, this POD approach for the 3D flow field reconstruction from experimental data issued from planes parallel to the flow seems capable to extract relevant information from a complex three-dimensional flow and can be an alternative to tomo-PIV for large volume of measurement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available