4.4 Article

Swimming performance of a biomimetic compliant fish-like robot

Journal

EXPERIMENTS IN FLUIDS
Volume 47, Issue 6, Pages 927-939

Publisher

SPRINGER
DOI: 10.1007/s00348-009-0684-8

Keywords

-

Ask authors/readers for more resources

Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a 'V'-shaped double wake, with two reverse-Karman streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available