4.6 Article

Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment

Journal

EXPERIMENTAL THERMAL AND FLUID SCIENCE
Volume 35, Issue 7, Pages 1274-1281

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2011.04.015

Keywords

Nanofluid; Electronic cooling; Heat pipe liquid-block; Heat transfer; Thermoelectric

Funding

  1. Directorate on Research
  2. Community Service University of Indonesia

Ask authors/readers for more resources

Microprocessor power dissipation is constantly increasing. An increase in microprocessor size has also resulted in higher heat fluxes. The growth of information technology has rapidly increased over the past few years, causing an increase in the demand for a microprocessor that has a very high computing ability. The previous generation of central processing units (CPU) had 1.17 billion transistors planted in it, which indicates that a significant amount of heat was generated. The total heat dissipation resulting from a high end CPU is approximately 110-140W, which will increase if the CPU voltage and frequency increase. Conventional air-cooled cooling systems are no longer adequate to remove these heat fluxes. For a number of applications, direct air-cooling systems will have to be replaced or enhanced by other high performance compact cooling techniques. In this study, the application of nanofluids as the working fluid on a heat pipe liquid-block combined with thermoelectric cooling is investigated. The type and effect of volume concentrations of nanofluids, coolant temperature, and thermoelectricsystem as heat pumps of a PC on the CPU's temperature are considered. The results obtained from this technique are compared to those from other conventional cooling techniques. The heat pipe liquid-block combined with the thermoelectric system has a significant effect on heat transfer from the CPU. The higher thermal performance heat pipe liquid-block and thermoelectric cooled system with nanofluids proved its potential as a working fluid. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available