4.6 Article

Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces

Journal

EXPERIMENTAL THERMAL AND FLUID SCIENCE
Volume 33, Issue 6, Pages 947-954

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2009.02.009

Keywords

Gradient surface; Chemical vapor deposition; Contact angles; Drop motion; Energy transition

Funding

  1. National Natural and Science Foundation of China [50276072, 50876119, NCET-07-0912]

Ask authors/readers for more resources

A surface with surface energy gradient was fabricated by using chemical vapor deposition technology with dodecyltrichlorosilane (C12H25Cl3Si), and its property was characterized by sessile drop method and Atomic Force Microscope scanning. Visualization experiments were carried out to investigate the motion behaviors of water and ethylene glycol droplets on horizontal and inclined gradient surfaces. And system free energy transition was analyzed to understand the mechanics of the droplet self-motion. The results show that the height and density of the silane molecules groups determined surface energy distribution on the surface. The liquid droplets were self-propelled to move horizontally or uphill from hydrophobic zone to hydrophilic zone on horizontal and inclined gradient surface. The motion process of the droplet experienced an accelerating stage and a creeping decelerating stage; the velocity and the displacement as well as the creeping frequency were proportional to the droplet size. The velocity of 2 ml water droplet reached 42 mm/s on the horizontal surface and 18 mm/s on the inclined surface, while that for ethylene glycol droplet reached 7 mm/s on the horizontal surface. The droplet motion was resulted from the energy transition among interfacial energy, kinetic energy, gravitational potential energy, and viscous dissipation energy. The interfacial energy released from deformation of the droplet is the main source for the motion. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available