4.3 Review

Channelrhodopsin as a tool to investigate synaptic transmission and plasticity

Journal

EXPERIMENTAL PHYSIOLOGY
Volume 96, Issue 1, Pages 34-39

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1113/expphysiol.2009.051219

Keywords

-

Categories

Funding

  1. Novartis Research Foundation

Ask authors/readers for more resources

The light-gated cation channel channelrhodopsin-2 (ChR2) has been used in a variety of model systems to investigate the function of complex neuronal networks by stimulation of genetically targeted neurons. In slice physiology, ChR2 opens the door to novel types of experiments and greatly extends the technical possibilities offered by traditional electrophysiology. In this short review, we first consider several technical aspects concerning the use of ChR2 in slice physiology, providing examples from our own work. More specifically, we discuss differences between light-evoked action potentials and spontaneous or electrically induced action potentials. Our work implies that light-evoked action potentials are associated with increased calcium influx and a very high probability of neurotransmitter release. Furthermore, we point out the factors limiting the spatial resolution of ChR2 activation. Secondly, we discuss how synaptic transmission and plasticity can be studied using ChR2. Postsynaptic depolarization induced by ChR2 can be combined with two-photon glutamate uncaging to potentiate visually identified dendritic spines. ChR2-mediated stimulation of presynaptic axons induces neurotransmitter release and reliably activates postsynaptic spines. In conclusion, ChR2 is a powerful tool to investigate activity-dependent changes in structure and function of synapses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available