4.4 Article

A Clustering Method to Characterize Intermittent Bursts of Turbulence and Interaction with Submesomotions in the Stable Boundary Layer

Journal

JOURNAL OF THE ATMOSPHERIC SCIENCES
Volume 72, Issue 4, Pages 1504-1517

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS-D-14-0115.1

Keywords

-

Funding

  1. Alexander von Humboldt foundation

Ask authors/readers for more resources

Atmospheric boundary layers with stable stratification include a variety of small-scale nonturbulent motions such as waves, microfronts, and other complex structures. When the thermal stratification becomes strong, the presence of such motions could affect the turbulent mixing to a large extent, and common similarity theory that is used to describe weakly stable conditions may become unreliable. The authors apply a statistical clustering methodology based on a bounded variation, finite-element method (FEM-BV) to characterize the interaction between small-scale nonturbulent motions and turbulence. The clustering methodology achieves a multiscale representation of nonstationary turbulence data by approximating them through an optimal sequence of locally stationary multivariate autoregressive factor model (VARX) processes and some slow hidden process switching between them. The clustering method is used to separate periods with different influence of the nonturbulent motions on the vertical velocity fluctuations. The methodology can be used in a later stage to derive a stochastic parameterization for the interactions between nonturbulent and turbulent motions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available