4.7 Review

Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain

Journal

EXPERIMENTAL NEUROLOGY
Volume 224, Issue 1, Pages 48-55

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2010.03.022

Keywords

Oleoylethanolamide; Neuroprotection; PPAR alpha; Ischemia; N-acylethanolamine; Stearoylethanolamide; N-oleoylethanolamine; Ceramidase; N-palmitoylethanolamine; Memory; Neurosteroids; Potassium channels

Categories

Funding

  1. Novonordisk Foundation
  2. Danish Ministry of Science, Technology and Innovation

Ask authors/readers for more resources

Acylethanolamides are formed in the brain on demand from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and several other quantitative minor species including anandamide (= arachidonoylethanolamide). PEA and OEA can activate several different receptors and inhibit some ion channels, e.g., PPAR alpha, vanilloid receptor. K channels (Kv4.3, Kv1.5), and OEA can activate GPR119 and inhibit ceramidases. Targets for SEA are less clear, but it has some cannabimimetic actions in rats in vivo. All acylethanolamides accumulate during neuronal injury, and injected IDEA has neuroprotective effects, and PEA has anti-inflammatory effects as studied in the peripheral system. Several of the pharmacological effects seem to be mediated via activation of PPARa. Recently, injected OEA has been found to consolidate memories in rats. Inhibitors of the acylethanolamide-degrading enzyme FAAH can increase levels of all acylethanolamides including annandamide, and some of the pharmacological effects caused by these inhibitors may be explained by increased cerebral levels of OEA and PEA, e.g., suppression of nicotine-induced activation of dopamine neurons. Furthermore, through activation of PPAR alpha, OEA and PEA may stimulate neurosteroid synthesis, thereby modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting to emerge. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available