4.7 Article

Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys

Journal

EXPERIMENTAL NEUROLOGY
Volume 215, Issue 2, Pages 220-227

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2008.09.025

Keywords

Golgi-impregnation; Immunocytochemistry; Spine plasticity; Dopamine receptors; MPTP-model; Parkinson's disease

Categories

Funding

  1. NIH [R01 NS 037948, RR 00165]

Ask authors/readers for more resources

Striatal spine loss is a key pathological feature of human Parkinson's disease (PD) that can be induced after complete degeneration of the nigrostriatal dopaminergic system in rodent models of parkinsonism. In line with these observations, our findings reveal a significant (30-50%) reduction in spine density in both the caudate nucleus and putamen of severely DA-depleted striata of MPTP-treated monkeys: the sensorimotor post-commissural putamen being the most severely affected region for both dopamine depletion and spine loss. Using MPTP-treated monkeys with complete or partial striatal dopamine (DA) denervation, we also demonstrate that striatal spine loss is an early pathological feature of parkinsonism, which progresses along a positive rostrocaudal and mediolateral gradient in parallel with the extent Of striatal dopamine denervation. Quantitative electron microscopy immunocytochemistry for D1 dopamine receptor (D1) in the striatum of control and severely DA-depleted animals revealed that both D1-immunoreactive and immunonegative spines are lost in the putamen of MPTP-treated monkeys. These data demonstrate that striatal spine loss in MPTP-treated monkeys is an early pathological event of parkinsonism, tightly correlated with the degree of nigrostriatal dopamine denervation that likely affects both direct and indirect striatofugal pathways. (c) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available