4.7 Article

Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: Partial colocalization with mature interneuron markers

Journal

EXPERIMENTAL NEUROLOGY
Volume 211, Issue 1, Pages 271-282

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2008.02.003

Keywords

layer I; GABA; nitric oxide synthase; neuroplasticity; eurogenesis; neocortex

Categories

Funding

  1. NINDS NIH HHS [R21 NS056371-02] Funding Source: Medline

Ask authors/readers for more resources

Doublecortin-immunoreactive (DCX+) cells were detected across the allo- and neo-cortical regions in the adult guinea pig cerebrum, localized to layer II specifically at its border with layer I. The density of labeled cells declined with age, whereas no apparent apoptotic activity was detectable over the cortex including layer II. DCX+ cells varied in somal size, labeling intensity, nuclear appearance, and complexity of processes. These cells were often arranged in clusters with cells of similar morphology sometimes packed tightly together. They exhibited complete colocalization with polysialylated neural cell adhesion molecule (PSA-NCAM) and neuron-specific type III beta-tubulin (TuJ1). Medium to large-sized DCX+ cells had well-developed neuritic processes, and expressed neuron-specific nuclear protein (NeuN). Large mature-looking cells with weak DCX reactivity invariably displayed heavy NeuN reactivity, implicating a transitional stage of these labeled cells. These transitional cells also consistently exhibited weak reactivity for gamma-aminobutyric acid (GABA), glutamate decarboxylase (GAD67), beta-nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and neuronal nitric oxide synthase (nNOS), suggestive of them being young GABAergic/nitrinergic interneurons. Our data indicate that DCX+ cells exist widely in the adult guinea pig cerebral cortex, with a predominant localization in upper layer II. The morphological variation and differential expression of neuronal markers in these cells implicate that they might be developing neurons, and that they are probably differentiating into GABAergic interneurons. This population of cells might be involved in interneuron plasticity in the adult mammalian cerebral cortex. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available