4.5 Article

Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8

Journal

EXPERIMENTAL GERONTOLOGY
Volume 43, Issue 4, Pages 339-346

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2008.01.008

Keywords

calorie restriction; neurodegeneration; ketogenic diet; metabolism; oxidative stress

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Calorie restriction (CR) is an experimental intervention in laboratory animals that attenuates age-associated increases in morbidity, mortality, and functional impairment. It is characterized by mild ketosis, hypoinsulinemia and hypoglycemia. In this study, we examined whether metabolic simulation of CR by a diet of isocaloric ketogenic or hypoinsulinemic diets ameliorated the learning and memory deficit in a strain of senescence-accelerated prone mice (SAMP8), a mouse model of age-dependent impairments in learning and memory. Male SAMP8 mice were fed high carbohydrate (CHO), high fat (FAT), or high protein (PRO) diets after weaning, and calorie intake was adjusted to 95% (sub ad libitum, sAL) or 70% (CR) of the mean calorie intake of control mice. At 28 weeks of age, We found CR ameliorated the performance defects of SAMP8 mice in a passive avoidance task. Neither FAT nor PRO diets affected performance of the task when fed sAL level, although a diet of these compositions partially mimicked the serum parameters of CR mice. These results suggest restriction of calorie intake is important for the prevention of learning and memory deficits, and that the simulation of serum changes induced by CR is not sufficient to prevent the cognitive defects of SAMP8 mice. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available