4.6 Article

Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies?

Journal

EXPERIMENTAL DERMATOLOGY
Volume 22, Issue 11, Pages 710-713

Publisher

WILEY
DOI: 10.1111/exd.12255

Keywords

collagen; fibroblast; fibrosis; morphogen; scleroderma; stem cell

Categories

Ask authors/readers for more resources

Canonical Wnt signalling belongs to the so-called morphogen pathways and plays essential roles in development and tissue homeostasis. Being such a crucial regulatory pathway, Wnt signalling is tightly controlled at different levels. However, uncontrolled activation of canonical Wnt signalling has been implicated into the pathogenesis of various human disorders. In the last years, aberrant Wnt signalling has been demonstrated in fibrotic diseases including systemic sclerosis (SSc). In this review, we will discuss the current state of research on canonical Wnt signalling in SSc. Activation of canonical Wnt signalling induces fibroblast activation with subsequent myofibroblast differentiation and excessive collagen release resulting in tissue fibrosis. Genetic or pharmacological blockade of Wnt activation ameliorates experimental fibrosis in different preclinical models. These findings have direct translational implications because several small molecule inhibitors of Wnt signalling are currently evaluated in clinical trials and some already showed first promising results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available